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Abstract
In this paper we present a novel design for automated market making

which separates the concerns of providing token liquidity vs. taking on
certain risks. This new design allows for low-risk single-sided liquidity
provision and thus enables Nabla to tap new sources of liquidity and
operate with significantly lower slippage and fees compared to other AMM
designs.

1 Introduction
Automated Market Makers (AMMs) have been one of the most impactful inno-
vations of DeFi. They not only allow for fully automated decentralized trading,
but as well democratize the opportunity to earn yield from market making and
trading fees.

Providing liquidity to an AMM like Uniswap [1, 2] can be a very profitable
activity, but it comes with a set of inherent risks. Liquidity providers (LPs)
provide liquidity to a 2-sided1 pool that always takes on the other side in the
trades users make - which results in changes in the amount of tokens in the pool
and thus the price they are traded for. This leads to two risks for the LP to
take on2:

• The market risk: the market prices of the tokens in a pool may go up or
down. As LPs own a share of the whole pool, they are always exposed to
the market rates of two (or even more) different tokens.

• The impermanent loss (IL) risk: due to the passive price finding mecha-
nism of classic AMM designs, each relative change in the pool token prices
results in a relative loss compared to the scenario of just holding the pool
tokens.

Whilst several newer DeFi protocols like Ondo [5], Tokemak [6] or Bancor v3 [7]
allow IL-free single-sided liquidity provision (LPing), they’re all build around
classic AMM designs and thus can only take over or compensate the occurring
IL, but not avoid it in the first place. Dodo [8] introduced the concept of
a Proactive Market Maker (PMM) which can in theory eliminate the IL by

∗name changed from Amber to Nabla in June 2023
1There are as well notable AMMs with pools that consist of more than 2 tokens (e.g.

Balancer [3] or Curve [4]), but such a design has no implications on our points of discussion.
2Not considering black swan risks like smart contract exploits.
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setting the price actively via an external oracle, instead of finding it passively
via arbitrage. Assuming a perfect oracle (which means no loss to arbitrage),
the IL is then replaced by what we call inventory risk: Whilst there is no IL
anymore, the LP is still exposed to the risk that comes from diverging pool
token prices combined with fluctuating relative amounts of those tokens in the
pool3. As the PMM effectively takes on the other side of each user trade at
the “fair” external market rate, the profit/loss of this inventory risk fluctuates
around zero (in contrast to IL always being negative) - but the relative loss (or
profit) at a given point in time can still be significant.

In addition, the market risk prevails for PMMs. Even if most PMMs allow
single-sided deposits of only one of the pool tokens, the LP in exchange still
receives a share of the whole pool, and is thus exposed to the market risk of all
tokens in that pool.

PMMs can be a big step forward in terms of capital efficiency, risk reduction
and revenue optimization for assets where highly reliable and manipulation-
resistant oracle price feeds exist, i.e. in cases where the price finding is clearly
dominated by off-chain markets. But significant inventory and market risks re-
main, and thus still prevent low-risk capital from LPing. This is especially true
when looking at the Forex use case: A low-risk option for single-sided LPing
would allow attracting deep liquidity in different fiat-pegged stable tokens. And
deep liquidity in different fiat-pegged stable tokens is the precondition for mak-
ing Decentralized Forex (DeFo) a viable option.

The proposed Nabla AMM solves this challenge through separation of con-
cerns: We disentangle the service of providing liquidity from the service of taking
on certain risks, and thus allow for the first time to provide liquidity without
IL-risk, inventory risk or market risk for any token other than the one provided.

To achieve this, we use single-sided swap pools and introduce an incentivized
“backstop pool” which takes on the inventory risk, and which rather targets
seasoned DeFi users as LPs. Thus the normal Nabla swap pools offer a very
low risk profile for single-sided LPs, and can target retail users and traditional
finance.

This separation of concerns is complemented by custom price curves for each
swap pool which allow for an optimal liquidity concentration around the oracle
price for every token, and elaborated pool rebalancing mechanisms. Altogether
this setup allows for extremely low slippage and trading fees.

2 Nabla’s Design
Nabla introduces a novel AMM design, which consists of a number of swap
pools, each holding an asset4 that can be traded on Nabla, and one backstop
pool holding a stablecoin reserve. A price oracle is required for each asset that
is to be traded.

3Example: due to trades a pool has more of token A and less of token B compared to it’s
equilibrium - and later the price of token A decreases significantly, whilst token B doesn’t
change in price.

4throughout this paper we will use the more general term asset instead of token for formal
definitions of the Nabla design - unless we refer to a specific token or an actual smart contract
implementation
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Every pool comes with a coverage ratio, as recently introduced by Platy-
pus [9], that states how much funds are currently held by the pool compared to
how much is owed to liquidity providers. Each pool is initially in an equilibrium.
Trades and certain other actions that drive pools away from their equilibrium
are penalized with a negative slippage, whereas certain trades and other actions
that move the coverage closer to the equilibrium are incentivized with a positive
slippage.

The backstop pool is used when a liquidity provider seeks to withdraw funds
from a swap pool with an already low coverage ratio. In this case liquidity from
the backstop pool can be used for the withdrawal. The backstop pool therefore
takes on most of the system risks and in return receives a substantial share of
the $NABLA token incentives.

In this section we provide a mathematical framework of AMMs and introduce
the Nabla AMM.

2.1 Notation
Throughout the paper ei denotes the i-th standard unit (column) vector and we
omit stating its dimension when it is clear from where it is used. That means
that ei denotes a vector consisting of zeros only, except for a single one at index
i. Transposing is denoted by T , e.g., eT

i for a unit row vector. Note that i can
be zero-based.

2.2 Definitions
In the following we assume that liquidity providers can provide liquidity for a
reserve asset X0 (backstop pool) and n ∈ N different assets X1, . . . , Xn (swap
pools).

Definition 2.1 (Asset Space). For an AMM with n assets we define the asset
space Vn = Rn+1

≥0 of non-negative numbers. For [x0, x1, . . . , xn]T ∈ Vn, x0
is the amount of the reserve asset X0 and xi is the amount of asset Xi for
i ∈ {1, . . . , n}.

Definition 2.2 (State). For an AMM with n assets and m liquidity providers,
we define the AMM’s state as a tuple s = (b, L) where

1. b = [b0, . . . , bn]T ∈ Vn is the balance vector and

2. L = [L1, . . . , Lm] ∈ R(n+1)×m
≥0 is the liability matrix where Lj ∈ Vn is the

AMM’s liability for liquidity provider j ∈ {1, . . . , m}.

The state space is thus defined by Sn,m := Vn × R(n+1)×m
≥0 .

Remark 2.3. The balance vector contains the asset amounts that the AMM
currently holds and the liability matrix captures the asset amounts that the
AMM owes to liquidity providers. Deposits by liquidity providers increase the
balance and liability. Trades only affect the balance vector. In the case of an
imbalance of the balance vector and the liabilities, withdrawals can be realized
with assets that differ from the ones that have originally been deposited. Precise
definitions for all operations of the AMM will be given in the course of this paper.
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In practice, the liabilities are recorded by issuing tokens to liquidity providers
for deposits and by consuming tokens for withdrawals. The tokens can change
ownership so the columns in the liability matrix can be “dynamic”. However,
the sum of the columns does not change by ownership changes.

Definition 2.4 (Price). p = [p0, p1, . . . , pn]T ∈ Rn+1
+ is called a price vector

where, for i ∈ {0, . . . , n}, pi is the price of asset Xi in terms of a reference asset
R.

Remark 2.5. In practice, the price vector p will carry data from external
markets that is pulled from a price oracle. Note that if the reserve asset X0 is
a stablecoin (e.g., $USDC) and the reference asset is the underlying fiat asset
(e.g., USD), then p0 = 1 does not necessarily hold and another price conversion
from X0 to that fiat asset R is required.

In order to compare amounts of different assets, we convert the amounts into
amounts of the reference asset R:

Definition 2.6. Given a price vector p, we define the R-conversion function
π : Rn+1 → Rn+1 by

π(v) := [v0p0, . . . , vnpn]T for a v = [v0, v1, . . . , vn]T ∈ Rn+1.

Definition 2.7. For a state s = (b, L) ∈ Sn,m we define:

1. The liability as l(s) = [l0(s), . . . , ln(s)]T :=
∑m

j=1 Lj ∈ Vn.

2. The coverage ratio θ : Sn,m →
(
R≥0 ∪ {∞}

)n+1 by

θ(s) :=[θ0(s), . . . , θn(s)]T ,

where θi(s) =


bi

li(s) if li(s) > 0
1 if ls(s) = bi = 0
∞ otherwise

for i ∈ {0, . . . , n}.

3. The liquidity gap γ : Sn,m → Rn+1 by

γ(s) = [γ0(s), . . . , γn(s)]T := b − l(s).

Remark 2.8. In practice we can avoid the case of zero liabilities and thus
θi(s) = ∞ by making small deposits to each pool that will never be withdrawn.

With the help of the liquidity gap and the R-conversion function, we can
observe some useful conditions for a state s ∈ Sn,m of the AMM. Let γ =
[γ0, . . . , γn]T := π

(
γ(s)

)
be the R-converted liquidity gap.

1. If 0 ≤ γ(s), then all liabilities can be paid to the liquidity providers in the
assets they originally deposited.

2. If
∑n

i=1 max{−γi, 0} ≤ γ0, then all liabilities can be paid out with the
originally deposited assets or via the reserve asset X0.

3. If
∑n

i=0 γi ≥ 0, then all liabilities can be paid out to the liquidity providers,
but potentially in other assets than the originally deposited asset or the
reserve asset X0.

The above conditions help to determine the “health” of the AMM.
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2.3 Actions
The AMM can be interacted with by applying certain actions.

Definition 2.9. Let us define the following actions:

1. σD(∆, i, j): a deposit of the amount ∆ ∈ R+ of asset Xi for an i ∈
{0, . . . , n} by liquidity provider j ∈ {1, . . . , m}. The deposit increases the
balance for asset Xi by ∆ and the liability for provider j and asset Xi by
∆ + α where α ∈ R≥0 is a potential reward.

2. σW (∆, i, j): a withdrawal of the amount ∆ ∈ R+ of asset Xi for an i ∈
{0, . . . , n} by liquidity provider j ∈ {1, . . . , m}. The withdrawal requires
∆ ≤ eT

i Lej and decreases the liability of asset Xi for provider j by ∆ and
the balance for asset Xi by ∆ − α where α ∈ [0, ∆] is a potential penalty.

3. σWR
(∆, i, j): a reserve withdrawal of the amount ∆ ∈ R+ of asset Xi

for an i ∈ {0, . . . , n} by liquidity provider j ∈ {1, . . . , m}. The reserve
withdrawal requires ∆ ≤ eT

i Lej and decreases the liability for provider j
by ∆ but instead of a payout in asset Xi, the amount ∆ is first converted
to the reserve asset X0 amount ∆R = pi

p0
∆. Then the amount ∆R is

deducted from the asset balance for asset X0

4. σT (∆i, i, j): a trade of the amount ∆i ∈ R+ of asset Xi (for i ∈ {1, . . . , n})
into an asset Xj (for j ∈ {1, . . . , n} \ {i}). For calculating the amount
∆j ∈ R+ of asset Xj that the trader receives, the amount ∆i is first
converted to ∆j = pi

pj
∆i. Then ∆j = ∆j − α is used where α ∈ [0, ∆j ].

Again, the amount α can be seen as a penalty(or reward) and still needs
to be defined. The trade requires ∆j ≤ eT

j b which is deducted from the
asset balance for asset Xj while the asset balance for asset Xi is increased
by ∆i.

We define Σ as the set of all actions.

Note that the above actions merely describe intended actions. An intended
action can be rejected if it cannot be applied to the current state. The precise
definition of how the state changes by applying the above actions will be given
in the state transitions in section 2.5.

2.4 Slippage Function
The aim of the AMM is to facilitate trades close to the price at external markets
and to keep the coverage ratios of all assets at 1 (or slightly above). For certain
actions that drive the coverage ratio of a pool away from 1, we deduct an
amount from the receivables for the agent which we call slippage. Similarly, we
give rewards for certain actions that drive the coverage ratio of a pool closer
to 1. In the following, we focus on the penalty case but we will use the same
functions for constructing appropriate rewards in Section 2.5.

In the Platypus AMM [9], a slippage function was introduced to define how
much is deducted. We will use a similar approach here and introduce improved
and simplified slippage functions.

5



Let us assume we have a slippage function h : Sn,m → [0, 1]n+1 where hi(s)
denotes the (infinitesimal) fraction of how much is deducted at a given state
s = (b, L) ∈ Sn,m.

To demonstrate the purpose of the slippage function, we now assume a liquid-
ity provider j ∈ {1, . . . , m} wishes to withdraw an amount of ∆ ≤ min{bi, eT

i Lej}
of asset Xi for i ∈ {1, . . . , n}. While the total liabilities for Xi are decreased
from li(s) to li(s) − ∆, the asset balance is decreased from bi to bi − ∆ + α for
some α ∈ [0, ∆]. For determining α we integrate the slippage function for all
intermediate states that result from the unaltered action:

α =
∫ ∆

0
h(b − tei, L − teie

T
j )dt. (1)

A crucial measure is the coverage ratio θi(s) of an asset Xi and thus here
we restrict ourselves to slippage functions that are based on the coverage ratio,
i.e., h = g ◦ θi for a function g : R≥0 → [0, 1]. Note that Platypus also uses a
coverage-ratio-based slippage function but calculates resulting amounts with a
difference quotient

α = g(r′) − g(r)
r′ − r

∆. (2)

where the slippage function is only evaluated at the initial coverage ratio r and
the resulting coverage ratio r′. Note that we omitted price conversions and addi-
tional swap fees for the sake of clarity. In contrast to Platypus, we achieve more
accurate results by calculating a slippage function integral as in Equation (1)
instead of approximating it with a difference quotient as in Equation (2).

We now investigate candidates for g which should fulfill the the following
requirements:

1. g is continuous,

2. g(0) = 1,

3. g(1) = 0, and

4. limr→∞ g(r) = β ∈ [0, 1].

Property 1 is helpful for the analysis and keeps the AMM’s behavior predictable
for traders and liquidity providers. Together with property 2 we achieve high
penalties or rewards when a pool is drained while property 3 results in low
penalties or rewards around a balanced pool. Property 4 defines how a pool is
treated where the balance is much greater than the liabilities.

Example 2.10. A simple choice is the rational function

g(x) = 1 −
(

2x

1 + x2

) 1
k

with a parameter k > 0 that controls the curvature. Figure 1 shows the function
for different values of k.
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Figure 1: Slippage function g from Example 2.10 for different values of k.

Example 2.11. Another choice is the rational function

g(x) =
(

1 − x

1 + β− 1
2k x

)2k

with a parameter k ∈ N that controls the curvature and a parameter β ∈ [0, 1]
that defines the asymptotic value for x → ∞. Figures 2 and 3 show the function
for different values of k and β.

Example 2.12. Let us consider the function

g(x) = (1 − xe1−x)k

with a parameter k > 0 that controls the curvature. Figure 4 shows the function
for different values of k. The integral of g can be computed easily for k ∈ N.
For example, for k = 1 the integral is given by∫

g(x)dx = x + (x + 1)e1−x + C

with a constant C ∈ R. For higher values of k the integrals can still be solved
analytically, e.g., with SymPy [10], but since the expressions get more complex
we only present the case k = 1 here.

Note that the above slippage functions show a different behavior than the
piecewise-defined function in Platypus. Firstly, the above functions use closed-
form expressions which simplifies the presentation and analysis. Secondly, the
slippage functions give truly zero slippage at coverage ratio 1 which is in contrast
to Platypus which gives a slippage of some small k > 0 (k = 2 · 10−5 was
suggested in [9]).
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Figure 2: Slippage function g from Example 2.11 for β = 0.5 and different values
of k.
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Figure 3: Slippage function g from Example 2.11 for β = 0.1 and different values
of k.

8



0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

Coverage ratio x

Sl
ip

pa
ge

g
(x

)

k = 1
k = 2
k = 4
k = 8

Figure 4: Slippage function g from Example 2.12 for different values of k.

The presented slippage functions (and potentially additional candidates) de-
serve a thorough performance analysis and comparison which is beyond the
scope of this paper.

2.5 State Transitions
In this section we precisely define how actions take the AMM from one state
to the next by applying a state-transition function δ : Sn,m × Σ → Sn,m. We
assume the current state is s = (b, L) ∈ Sn,m and for each action σ ∈ Σ we need
to determine the next state δ(s, σ) = s′ = (b′, L′) ∈ Sn,m or that the action is
rejected (in which case we formally set s′ = s).

2.5.1 Swap pool deposit

LPs can deposit single-sided liquidity into swap pools. Such a deposit alters
both the liabilities and the balance of the respective pool, and thus always
moves the coverage ratio θi(s) closer to 1 (unless θi(s) = 1). In case θi(s) < 1,
the deposit is therefore rewarded via a positive slippage (“reward”) αD.

For a deposit σD(∆, i, j) of the amount ∆ of asset Xi by liquidity provider
j, the next state is thus given by b′ = b + ∆ei and L′ = L + ∆eie

T
j + αD where

αD =
{

0 if θi(s) ≥ 1∫ ∆
0 h(b + tei, L + teie

T
j )dt otherwise

(3)

is the deposit reward. The liquidity provider is thus entitled to withdraw ∆+αD

for the deposit of ∆. Note that a withdrawal incurs a respective penalty as long
as θi(s) < 1, see Section 2.5.2.
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For the slippage function g in Example 2.12 with k = 1, the integral in
Equation (3) can be calculated with h = g ◦ θi by∫ ∆

0
h(b + tei, L + teie

T
j )dt =

∫ ∆

0
g

(
bi + t

li + t

)
dt

=
∫ ∆

0
1 − bi + t

li + t
e

1− bi+t

li+t dt

=
[
t − (li + t)e1− bi+t

li+t

]∆

0

where li = li(s).

2.5.2 Swap pool withdrawal

LPs can withdraw their single-sided liquidity from swap pools. Such a with-
drawal decreases both the liabilities and the balance of the respective pool, and
thus always move the coverage ratio θi(s) further away from 1 (unless θi(s) =
1). In case θi(s) < 1, the withdrawal is therefore penalized with a negative
slippage (“penalty”). The LP can choose to avoid the penalty by withdrawing
from the backstop pool instead (see next section).

For a withdrawal σW (∆, i, j) of the amount ∆ of asset Xi by liquidity
provider j, we first calculate the withdrawal penalty

αW =
{

0 if θi(s) ≥ 1∫ ∆
0 h(b − tei, L − teie

T
j )dt otherwise.

(4)

The withdrawal needs to be rejected if one of the following conditions holds:

1. If ∆ > eT
i Lej then the withdrawal exceeds the deposited amount of liq-

uidity provider j and needs to be rejected.

2. If ∆−αW > eT
i b then the withdrawal exceeds the asset balance and needs

to be rejected.

If it is not rejected, the liquidity provider receives the amount ∆ − αW and the
next state is thus given by b′ = b − ∆ei + αW and L′ = L − ∆eie

T
j .

For the slippage function g in Example 2.12 with k = 1, the integral in
Equation (4) can be calculated with h = g ◦ θi by∫ ∆

0
h(b − tei, L − teie

T
j )dt =

∫ ∆

0
g

(
bi − t

li − t

)
dt

=
∫ ∆

0
1 − bi − t

li − t
e

1− bi−t

li−t dt

=
[
t + (li − t)e1− bi−t

li−t

]∆

0

where li = li(s).
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2.5.3 Swap pool reserve withdrawal

In case an LP wants to withdraw liquidity from a swap pool Xi with θi(s) < 1
for i ∈ {1, . . . , n}, there are two options: they can either accept the withdrawal
penalty when withdrawing the provided asset Xi as outlined in Section 2.5.2,
or they can withdraw the full amount without penalty in asset X0 from the
backstop pool instead. Such a reserve withdrawal changes only the liability of
the swap pool, but not the balance, and thus increases the coverage ratio of the
swap pool (whilst decreasing the coverage ratio of the backstop pool). A reserve
withdrawal is only possible up to the point where the coverage ratio of asset Xi

reaches 1.
For a reserve withdrawal σWR

(∆i, i, j) of the amount ∆i of asset Xi by liq-
uidity provider j, we first define the maximal amount ∆i that can be withdrawn
via the reserve pool by

∆i := max
{

x ∈ [0, ∆i]
∣∣ θi(b, L − xeie

T
j ) ≤ 1

}
.

Then we calculate the corresponding amount in the reserve asset by ∆0 := pi

p0
∆i.

The withdrawal needs to be rejected if one of the following conditions holds:

1. If ∆i > eT
i Lej then the withdrawal exceeds the deposited amount of liq-

uidity provider j and needs to be rejected.

2. If ∆0 > eT
0 b then the withdrawal amount exceeds the balance of the back-

stop pool and needs to be rejected5.

3. If ∆i − ∆i > eT
i b then the withdrawal’s amount of asset Xi exceeds the

asset balance and needs to be rejected.

If it is not rejected the liquidity provider receives ∆0 of the reserve asset X0
and ∆i−∆i of asset Xi. The next state is thus given by b′ = b−∆0e0−(∆i−∆i)ei

and L′ = L − ∆ieie
T
j .

Note that the withdrawal ∆i −∆i for asset Xi (if any) is carried out without
any penalty because the coverage ratio satisfies θi(s′) = 1 if ∆i − ∆i > 0.

2.5.4 Swap

A trade σT (∆i, i, j) of the amount ∆i of asset Xi to asset Xj consists of two
steps.

First, because the balance of asset Xi is increased, the coverage ratio of Xi

is increased and thus the trader may benefit from a reward for bringing the
coverage ratio closer to 1 if it was lower than 1, or incur a penalty for worsening
the coverage ratio if it is greater than 1. We split the swap-in of ∆ into two
parts by defining

∆′
i := min

{
max{0, li(s) − bi}, ∆i

}
∈ [0, ∆].

The amount that is actually going to be converted is then defined by ∆i =
∆i + αi where αi is a reward or penalty that is given by

αi =
∫ ∆′

i

0
h(b + tei, L)dt −

∫ ∆i

∆′
i

h(b + tei, L)dt. (5)

5See Section 4.3 for details.
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Thus, a reward is generated in the interval [0, ∆′
i] and a penalty is generated in

the interval [∆′
i, ∆i]. Note that the intervals can collapse to a single point in

which case the corresponding interval is zero.
Secondly, the converted amount is determined by ∆j := pi

pj
∆i. If ∆j > eT

j b

then the swap needs to be rejected. Otherwise, we proceed analogously to the
swap-in and split the swap-out into two parts by defining

∆′
j := min

{
max{0, b − l}, ∆j

}
∈ [0, ∆j ].

The trader then receives ∆j = ∆j − αj where

αj =
∫ ∆j

∆′
j

h(b − tej , L)dt (6)

is a penalty for the interval [∆′
j , ∆j ] because the balance reduction of asset Xj

also reduces its coverage ratio below 1 in this interval. In the interval [0, ∆′
j ] no

penalty or reward is applied. The next state is given by b′ = b + ∆iei − ∆jej

and L′ = L.
For the slippage function g in Example 2.12 with k = 1, the integral in

Equation (5) can be calculated with h = g ◦ θi by

αi =
∫ ∆′

i

0
g

(
bi + t

li

)
dt −

∫ ∆i

∆′
i

g

(
bi + t

li

)
dt

=
∫ ∆′

i

0
1 − bi + t

li
e

1− bi+t

li dt −
∫ ∆i

∆′
i

1 − bi + t

li
e

1− bi+t

li dt

=
[
t + (bj + li + t)e1− bi+t

li

]∆′
i

0
−

[
t + (bj + li + t)e1− bi+t

li

]∆i

∆′
i

where li = li(s). The integral in Equation (6) can be calculated analogously by

αj =
∫ ∆j

∆′
j

g

(
bj − t

lj

)
dt =

[
t − (bj + lj − t)e1−

bj −t

lj

]∆j

∆′
j

.

3 AMM Details
3.1 The curvature parameter k

Each pool has its individual slippage function, defined through the curvature
parameter k, see Section 2.46. High values for k result in a low slippage for a
wide coverage ratio range, which is suitable for pools with high volumes and
without systemic drifts into one direction.

Low values for k result in a low slippage only in a narrow range around
θi(s) = 1, and significant slippage is applied when the pool leaves the equilib-
rium. This setup is best suited for pools with rather sporadic trades, and/or
systemic drifts into one direction.

We will derive suitable initial values for k for all swap pools by evaluat-
ing historical volatility data for the different supported assets. Assets (i.e. fiat
stables) that show a low price volatility (against the USD) can support high val-
ues, whilst currencies with a high price volatility, and/or a significant directional
price drift should be set up with lower values.

6We neglect the parameter β in this section for clarity.
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3.2 Rewards and penalties
As discussed in Sections 2.3 and 2.4, the following actions, from the perspective
of a single pool, are rewarded or penalized:

Deposit Withdrawal Swap-in Swap-out
Coverage ≤ 100% Reward ↑ Penalty ↓ Reward ↑ Penalty ↓
Coverage > 100% Neutral ↓ Neutral ↑ Penalty ↑ Neutral ↓

↑↓ indicate an increase/decrease of coverage ratio

Table 1: Overview of rewards/penalties

Generally speaking, deposits and withdrawals, as well as swaps into and
out of a pool, have mirroring rewards and penalties. This way we achieve a
self-sufficient incentive system.

Note that every new pool initially has a coverage ratio of 1 and in that
moment all possible actions that drive the coverage ratio away from 1 will either
lead to a penalty or be incentive-neutral. Bringing the coverage ratio back
towards one either leads to a reward or is incentive-neutral.

3.3 Backstop pool
The backstop pool plays a central role in the design of Nabla, as it takes on the
swap pools’ major risks. While the swap pool liability tokens represent the right
to withdraw a certain previously deposited amount of Xi, the backstop pool LP
tokens represents a share of the total backstop liquidity, which is defined as the
sum of b0 from the backstop pool, all surplus assets of Xi in pools with θi(s) > 1
minus all shortfalls in pools with θi(s) < 1. The total R-converted value is

λ := max
{

p0b0 +
∑

i∈{1,...,n}

piγi(s) , 0
}

.

The vector z of withdrawable balances is defined by the backstop pool bal-
ance and all pools with coverage ratio > 1:

z = [b0, z1, . . . , zn]T , where zi = max{γi(s), 0}.

If a backstop pool liquidity provider j wishes to withdraw a share ω ∈[
0,

eT
0 Lej

l0(s)
]

then the paid out amounts are given by

z := ωλ

∥π(z)∥1
z

where ∥π(z)∥1 =
∑n

i=0 pizi is the total R-converted value of z. Note that
λ ≤ ∥π(z)∥1 and that the total value of the paid out assets is ∥π(z)∥1 = ωλ.

The backstop pool accepts deposits only in the reserve asset X0, but the set
of assets to be withdrawn depends on which swap pools have a coverage ratio
above one. That is in addition to the backstop pool asset.

The LP can instead choose a different combination of assets, but for any
increase of the X0 part, the respective slippage applies. We expect most LPs to
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withdraw their funds either in full in X0 despite the incurring slippage penalty,
or in a different single Xi (slippage penalty applies in case θi(s) should fall
below 1). All users that choose a combination of assets that includes any assets
other than X0 have automatically passively contributed to the rebalancing of
the backstop pool towards a higher coverage ratio. Users that withdraw their
funds entirely in currencies other than X0 contribute the most to this intrinsic
rebalancing.

3.3.1 Backstop rebalancing

In order to further support the continuous rebalancing of the backstop pool,
Nabla will additionally support unidirectional trades between the backstop pool
and any swap pool with θi(s) > 1, but restricted to trades that increase θ0(s).
No slippage applies for these trades7, and the trading fees are set to zero.

3.4 Protocol-owned Liquidity (POL)
So-called "mercenary capital" poses a major challenge for DeFi protocols: capital
that always keeps watching out for the highest yield and quickly moves on to
the next protocol once the typical initial period of high incentives comes to
an end. As Nabla rather targets low-risk capital for its swap pools, this issue
should be less severe in our case. However, in order to make Nabla increasingly
independent from external LPs, the protocol is designed to own a significant
and growing share of the liquidity in all its pools. This POL serves as a liability
reserve that will stay in the pools forever (unless the DAO decides otherwise).
The POL thus turns the protocol from a pure service provider for 3rd-party LPs
into a vertically integrated end-to-end product.

3.5 Trading fees and LP incentives
Nabla charges a certain percentage for each swap as trading fee fi, which is
deducted during a trade in both involved assets Xi. Initially fi will be set to
a fixed f for all assets, in later iterations fi may be set to individual values for
each pool, depending on their usage and risk parameters.

In contrast to most other AMM concepts, the trading fees on Nabla are not
allocated to the LPs, but are used to grow the protocol-owned liquidity (POL).
LPs are instead compensated completely with $NABLA token emissions.

Trading fees are handled as a pool deposit on behalf of the POL in the
respective pools where they occur. As the protocol has full ownership over the
POL, this results in a backing of the protocol tokens with the accumulated
trading fees. This "risk-free value" (RFV) should act as a valuation floor for
the protocol token, and thus counters a potential sell pressure by the LPs. The
POL will of course as well receive it’s share of the protocol token emissions,
and will use those tokens to vote for an evenly distributed minimum of token
emissions for all active pools.

7otherwise we would open an exploitable security loophole.
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4 Security considerations
4.1 Oracle security
The reliability of the oracles providing the pool asset’s prices is vital to the
security of Nabla. The oracles must provide correct prices and update them
quickly and reliably in case of price changes. The secure operation of the AMM
thus depends on the quality and trustworthiness of the asset price oracles.

An inaccurate price provided by an oracle will allow trading assets at un-
fair conditions. This security risk can be mitigated to some extent by sanity
checks on the data provided by the oracles, by using oracles with a secure multi-
signature setup only and ideally by using more than one oracle for a single asset.

Frequent reliable price updates are also important in order to not trade using
stale prices. The risk is somewhat limited for the Forex use case though, as most
fiat currencies tend to be less volatile than the average crypto asset, thus causing
less damage in case of stale prices.

It should also be noted that pools cannot easily be drained by trades at stale
prices as the slippage will gradually increase as a pool’s liquidity is decreasing.
Any small discrepancy in asset pricing would only lead to a small exploitable
amount, due to the imposed trading fee.

4.2 High-value contracts
Nabla’s pools, like any AMM pools, must be considered attack surfaces as they
have access to third-party funds and are by their very nature exposed.

The backstop pool is likely the highest-risk asset as it is a central piece
of Nabla’s architecture and holds more funds than the average swap pool. A
successful attack on the backstop pool bears the risk of draining other pools as
the backstop pool must be able to interact with all the swap pools.

A successful attack on any swap pool could affect any other pool’s liquidity,
too, as any swap pool can trade against any other swap pool.

In order to further strengthen the AMM’s security, sanity checks can be
added to compare pool balances after a trade or backstop withdrawal with the
balances before. In case of a noticeable deviation the swap can be rejected. A
simple version of these checks should be feasible at minor gas costs.

4.3 Swap pool bank run
Any swap pool’s coverage ratio might deviate significantly from the ideal θi(s) =
1. The worst case is a sudden significant decrease in liquidity, either by with-
drawals when the pool coverage ratio is already low or by swaps of massive
volume.

The main risks are the inability to swap to that asset if it is too illiquid or
that the swap becomes too expensive due to the resulting high slippage. The
other risk is that the price oracles might not update quickly enough, leading to
arbitrage opportunities where there should not be any.

The risk of mercenary capital suddenly being withdrawn in significant amounts
is reduced due to POL. It can be further mitigated by implementing and in-
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centivizing an option for liquidity providers to lock their deposits for a certain
amount of time or imposing a cool-off period prior to withdrawal.

4.4 Backstop pool bank run
Similar to the swap pools, the backstop pool might face a sudden outflow of
capital as well. The caused effects are similar, but not the same.

As the backstop pool needs to cover various risks of the swap pools, a sudden
drop in backstop liquidity can seriously impede the operational readiness of the
AMM. POL and timelocks can mitigate that risk.

It is also possible that the backstop pool runs out of the backstop asset
X0, but still has access to significant swap pool surpluses. In this situation
backstop LPs would be able to withdraw, but the backstop pool would be de
facto inoperable as the swap pools expect the backstop pool to provide X0
liquidity.

Those swap pool surpluses can, however, serve as a kind of "backstop to the
backstop", allowing withdrawals from low-coverage swap pools even if there is
no more backstop liquidity either, by withdrawing in some other swap pool’s
assets.

4.5 Backstop pool arbitrage loop
The backstop withdrawal option introduces additional complexity to the penalty
/ reward structure, which comes with the potential for systemic risks.

In order to mitigate this and render infinite loop attacks impossible that
could exploit this complexity, we set the rewards for backstop rebalancing trades
to zero (see Section 3.3.1). In addition there will be a "cool-off period" after
depositing into a swap pool which will only allow withdrawing via the backstop
pool after that time has passed.

5 Governance
Nabla will broadly follow the governance model pioneered by Curve[11]. The
protocol will be managed by holders of a protocol native governance token called
Nabla Governance Token ($NABLA). $NABLA tokens will represent voting
rights. Holders will be able to decide on the ongoing allocation of the weekly
$NABLA token emissions between the different pools. Furthermore, holders
with enough $NABLA tokens will be able to make a formal proposal for change
on the protocol. Token holders will then be able to vote on the proposal them-
selves or delegate their vote shares to a third party.

6 Outlook
In this section we present some feature ideas that we envision for future versions
of the Nabla protocol.
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6.1 Self-learning curves
Once there is enough real-life trading data for Nabla’s swap pool, we plan to
include an aspect of machine learning into a next iteration of the price curve
design. Based on past trading patterns, we plan to derive the optimal curvature
parameter k for each pool for keeping the pool in balance. For example, if a
certain pool sees a clear pattern of constant outflows through directional trades,
the sell-side of that slippage curve would go up quicker to proactively prevent
the pool from getting depleted.

6.2 Permissioned pools
We plan to launch Nabla permissioned pools in the future, which will be specifi-
cally designed for institutions in order to facilitate regulatory compliance in the
DeFi space. Nabla permissioned pools will only be accessible to whitelisted LPs
and users, and thus allow, e.g., regulated money transfer services to utilize the
power of DeFi for their cross-border Forex transactions for KYC’d clients.

6.3 Request for quote (RFQ)
A request for quote feature with a locked-in exchange rate for a certain amount of
time would allow for an even more powerful integration of Nabla into the money
transfer flows. Whilst it’s not feasible to realize an RFQ feature directly within
the AMM logic, there’s a great opportunity for a second-layer protocol on top of
Nabla to offer this feature - either in combination with a Forex hedging protocol,
or solely for the permissioned pools, under certain terms and conditions, to
prevent misuse.
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